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Abstract
Truck freight has high importance to the national economy as it handles more cargo than other types of freight transporta-
tion. To improve the safety of commercial vehicles, several studies have focused on determining factors leading to crashes.
Parametric models have been extensively employed to explain crash causal factors for heavy trucks. Unlike studies in the past,
a comprehensive framework was proposed in this study to compare crash underlying factors utilizing several statistical
approaches. The structural equation modeling approach was used to assess latent factors affecting the crash severity of large
trucks. In addition, ordinary (binary) logistic and random parameter models were employed to assess the direct effect of the
observed data, and the heterogeneity in parameter means was also estimated. Three crash categories were investigated:
single-truck crashes, multi-vehicle truck crashes, and total truck crashes. A total of five years of crash data from 2015 to
2019 were analyzed. The results showed that multiple observed variables were factored to measure crash severity. Direct
and indirect effects were identified, in which challenging roadway conditions had an indirect effect on crash severity for
single-truck crashes. Random parameter logit models indicated that roadway geometry and adverse weather conditions were
among the significant contributing factors increasing crash severity for trucks. This study recommends that improving the
situational awareness of truck drivers, providing more frequent rest stops, updating variable speed limit algorithms, and inte-
grating roadway geometry information into connected vehicle applications in Wyoming could be considered to assist stake-
holders in promoting safety on rural interstate corridors.
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The truck industry is considered essential to freight logis-
tics with a significant impact on the well-being of the
U.S. economy. On the other hand, truck crashes have a
significant adverse impact on the transportation section,
which results in huge losses with respect to productivity,
property damage, and most importantly, personal inju-
ries. Commercial truck crashes are increasing at an
alarming rate nationwide. According to the Federal
Motor Carrier Safety Administration (FMCSA), 5237
large trucks and buses were involved in fatal crashes in
2019, which represents a nearly 47% increase in fatal
crashes compared to 2009 (1). Injury crashes involving a
truck increased by 62% in 2009 compared to 2016. An
increase of 13% in injury and property damage only

(PDO) crashes was encountered between 2016 and 2019
(2). The 2020 large trucks fact sheet of the National
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Highway Traffic Safety Administration (NHTSA) stated
that 27% of the fatal crashes involving a heavy truck
occur on interstate roads, while 55% occur on rural
roadways. The percentage of large trucks involved in
fatal crashes, as a proportion of all vehicles across the
U.S.A., ranged from 4.0% to 19.0%, with the highest
percentage reported in Wyoming (2).

The state of Wyoming has three rural interstate roads
with a total length of 910 mi: Interstate 25 (I-25) 300 mi,
Interstate 80 (I-80) 402 mi, and Interstate 90 (I-90) 209 mi.
I-80 includes four weather-based variable speed limit (VSL)
sections, while the other two interstate roads include only
one VSL section each. In the winter season, during the
months from October to April, the interstate roads in
Wyoming usually encounter pile-up crashes, especially on I-
80. These pile-up crashes could involve more than 60 vehi-
cles, resulting in multiple fatalities, injuries, and PDO
crashes. Adverse weather conditions and challenging road-
way geometry are usually the main contributing factors
behind such catastrophic crashes. According to the U.S.
Department of Transportation (U.S. DOT), Wyoming was
ranked first in 2019 in fatal crashes involving large trucks
per million people, with a rate of 57.02. Truck crashes
increased in Wyoming from 2016 to 2019, in which fatal
crashes increased by nearly 45%, injury crashes increased
by 12%, and PDO crashes increased by 29% (3).

The statistics depict serious safety issues that large
truck crashes cause, considering the multiple crash sever-
ity categories. Accordingly, several studies have investi-
gated the crash severity of truck-involved crashes to
provide insights to alleviate the outcome consequences
of a crash. This could be done by identifying the factors
that might significantly increase the severity of truck-
related crashes. Clarifying crash casual factors could help
one to select countermeasures and improvements that
promote traffic safety for trucks. Multiple factors are
known to affect the crash frequency and severity, includ-
ing roadway geometry, traffic volumes, environmental
factors, driver characteristics, vehicle characteristics, and
crash characteristics. Traffic volumes, as the main crash
exposure, are usually the main significant factor that
increases the severity of crashes. In particular, truck traf-
fic is considered a significant factor that might increase
the outcome severity of a crash.

Previous studies utilized parametric approaches to
investigate crash injury severity for large trucks.
Observed variables extracted from historical crash data
were mainly utilized to estimate the direct effect of indi-
cator variables on the severity of crashes involving a
truck. Despite the selection of the model and its underly-
ing assumptions, the complex interrelationship between
crash variables cannot be observed using traditional
parametric approaches (4, 5). Unlike other studies, a
comprehensive analysis framework was conducted in this

study, in which parametric and latent factor analysis
approaches were employed. The ordinary logistic model
(OLM) and the random parameter logit model (RPLM)
were selected as the parametric approaches for the data
analysis, while the structural equation model (SEM) was
selected to investigate the effect of latent variables on
increasing the crash severity of large trucks. The SEM
can resolve the complex relationship between the indica-
tor variables, as well as clarifying the direct and indirect
impacts for the latent variables on the response variable
(6). The results of this study will help in providing
insights to develop transportation policies, improve car-
rier operation, and select countermeasures that could
help reduce the crash-cost.

Background

Several studies have been conducted with the focus of pro-
moting the operational safety of commercial trucks by
determining the causal factors that increase the frequency
and severity of truck-related crashes. Usually, truck
crashes are investigated by the type of crash, in which they
are separated into two main categories, single- and multi-
vehicle truck crashes. Investigating the two types of crashes
separately would highlight the difference in the crash char-
acteristics for each type, as they are anticipated to be dif-
ferent (7–12). In addition, several studies have been
conducted to investigate the factors affecting truck crashes
on rural interstate roads, accounting for new emerging
technologies, such as connected vehicles (CVs) (13–19).
Zhu and Srinivasan (20) included driver behavior factors
along with variables extracted from crash reports utilizing
an ordered probit model. Among the several significant
variables, dummy variables that indicated missing data
showed a strong significance toward increasing crash
injury severity, which could be because of the gaps in crash
reporting or because of the unobserved heterogeneity in
the data. However, the study concluded a limitation of the
small sample size used in the analysis. Another study pro-
vided a comparative analysis for factors affecting the crash
severity of large truck crashes using the ordered logit
model (21). The study showed that variables related to the
roadway, crash, vehicle, and driver had a significant effect
on the investigated crash severity. Among the significant
variables, the season, manner of collision, lighting condi-
tions, driving under the influence (DUI), and percentage of
truck traffic were significant.

Data mining approaches have also been adopted to
investigate the crash severity of commercial trucks. A
recent study used gradient boosting to evaluate the truck
crash injury severity (22). The analyzed crash data were
obtained from two states; North Dakota and Colorado.
The study accounted for the scale of the trucking com-
pany as a predicting variable. The results showed that
small-scale companies had the lowest probability of crash
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risk. A study conducted by Uddin and Huynh (23) used
the RPLM to investigate the severity of crashes involving
a truck. The study concluded that adverse weather and
challenging roadway geometry were significant variables
in increasing the severity of crashes involving a truck.
The results of the study were in accordance with Naik
et al. (7). The latter study utilized random parameter
ordinal and multinomial regression models. In addition,
Bayesian logistic models were adopted to conduct crash
severity analysis (24). The study included a factor expres-
sing the presence of large trucks in the model and utilized
interactions to account for factors affecting the severity
of truck crashes. The results of the study showed that
adverse weather and steep downgrades would increase
the severity of truck-related crashes.

Latent variables, which are unobserved variables,
could help in clarifying the complex interrelationship
between the crash indicator variables. The SEM could be
considered as a promising statistical approach that
accounts for these interrelationships. It could quantify
latent variables that cannot be directly measured or
observed. The SEM was previously used to analyze sur-
vey data and to assess driver behavior questionnaires (16,
25–29). Recently, the SEM was adopted to investigate the
resultant severity of crashes. It was concluded that injury
severity and vehicle damage could be used as indicator
variables to measure crash severity (6). The results
showed that the SEM with the two latent variables pro-
vided the best model fit. Another study developed a SEM
to estimate truck crash severity (30). The developed SEM
was factored into five latent variables, as follows: crash,
environment, road, driver, and severity. While the study
provided reliable results, the development of the measure-
ment model was based on hypothetical assumptions. The
results showed that crash severity could be measured
using the number of deaths, the number of injured, and
the number of cars involved in the crash. Kim et al. (31)
examined the effect of accessibility on crash severity. It
was found that accessibility had a reverse effect on crash
severity. Increased accessibility would reduce the crash
severity. Khattak and Targa (32) utilized an ordinary
least squares (OLS) regression to examine the risk factors
affecting the large-truck-related crashes. The authors
found that dangerous truck-driving behaviors, such as
speeding and reckless driving, would increase the prob-
ability of truck rollovers. The OLS is a similar statistical
technique to the SEM. However, the SEM provides
superior model accuracy and precision (33).

Methodology

The OLM, RPLM, and SEM were the three statistical
approaches used in this study to develop the analysis
framework. The ordinary regression model was used in

this study to denote the binary logistic model with con-
stant parameters and differentiate it from the random
parameter model. The OLM accounts for the binary
nature of the crash severity (fatal and injury [F+I] and
no injury). The random parameters model was used to
account for the variation in the relationships with the
response variable within crashes. The SEM was adopted
to investigate the latent variables that could influence the
severity of truck crashes, while accounting for variance
and covariance within and between crashes. It also clari-
fies the direct and indirect effects for the obtained latent
variables on the truck crash severity.

Ordinary Logistic Model

Logistic regression is a common model used in traffic
safety and operation studies. Logistic regression is mainly
used to analyze categorical data, in which it is applied to
a binary, nominal, or ordinal dependent variable. The
OLM equation is given in Equation 1:

ln Pj

� �
= aj � b1x1 +b2x2 + b3x3 + . . .ð Þ ð1Þ

where x represents the explanatory variables, a represents
the response probability when explanatory variables
are at the reference level, and b represents the regression
coefficients. The logit link function takes the form
log(P/(1 2P)), in which P indicates the probability of
success for the response variable y.

Random Parameter Logit Model

The random parameter version of the logit models, also
known as the mixed logit model, was adopted in this
study to account for the possible observation-specific
heterogeneity in the data. In addition to the mean value
estimated by the fixed model, the standard deviation of
the estimated parameter is also determined. The random
parameter model accounts for the individual-level het-
erogeneity in the data, in which it assumes the random
parameter to follow a statistical distribution. Simulated
maximum likelihood techniques are used to estimate the
parameters associated with random parameter models.

The Wyoming Department of Transportation
(WYDOT) records the crash severity according to the
KABCO scale: (K) is fatal injury, (A) is incapacitating
injury, (B) is non-incapacitating injury, (C) is possible
injury, and (O) is no injury/PDO crash. Because of the
ordinal nature of crash severity, ordered logistic and
ordered probit models emerge as the most commonly
used statistical models to conduct crash severity analysis
(17, 34–37). Because of limited observations in each
crash severity group, the injury severity levels were com-
bined into two levels, no injury and fatal + injury,
where i= 1 if a crash results in either fatal or any kind
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of injury and i= 0 if a crash results in no injury.
Equation 2 provide the linear function to determine the
discrete outcome i for observation n (38):

Sin =biXin + ein ð2Þ

where Xin is the vector of predictors and bi is the associ-
ated vector of estimable coefficients.

The mixed logit framework allows the parameter vec-
tor b to vary across each observation, unlike the ordinary
logit model where b values are fixed for all observations
(39, 40). This accounts for the heterogeneity in crashes by
allowing the influence of the predictors to vary with each
crash. Similar to ordinary logit model, the mixed logit is
estimated by taking the integral of the standard logit
probabilities over a density of parameters, as shown in
Equation 3 (38):

Pn ijjð Þ=
ð

EXP(biXin)P1
i= 0 EXP(biXin)

f (bijj)dbi ð3Þ

where f (bijj) is the probability density function (PDF)
of the random parameter bi and j is the vector of estim-
able parameters characterizing the PDF of bi. When b is
allowed to vary, the probability of crash observation n

having a particular injury outcome i cannot be calculated
by direct computation. Therefore, simulation-based max-
imum likelihood methods such as Halton draws are usu-
ally used to obtain a certain number of random samples
of the coefficients. In this study, a simulated maximum
likelihood with 500 Halton draws is utilized to obtain
reliable estimates (41). The available distributions for the
random parameters include normal, lognormal, triangu-
lar, and uniform, but the best statistical fit was obtained
when the random parameters were assumed to be nor-
mal, which is in agreement with previous studies (42, 43).

Structural Equation Model

The SEM could be viewed as a variance and covariance
analysis in a simultaneous regression modeling approach
(25, 29, 44, 45). The SEM is a multivariate statistical
approach that analyses structural relationships between
the measurement model and latent constructs (46).
Recently, a few studies have utilized the SEM to investi-
gate latent factors that could lead to a crash, as well as
to perform real-time risk assessment (6, 30, 31, 47, 48).
One main advantage of the SEM is that it can clarify
complex relationships (indirect, multiple, and reverse
relationships) between exogenous and endogenous latent
variables (49). In addition, latent variables that are
unquantifiable could be estimated using the SEM.
Moreover, it simultaneously estimates the path coeffi-
cients of the relationships between the latent variables in
the context of a full model.

The SEM is developed in two phases: (1) developing
the measurement model, which specifies the significant
variables that can measure each constructed latent vari-
able with an exogenous model (x-measurement model)
and an endogenous model (y-measurement model); and
(2) the structural model, which specifies the significant
direction of prediction between the exogenous model and
the endogenous model.

The measurement model is developed using explana-
tory factor analysis (EFA), confirmatory factor analysis
(CFA), and engineering judgment using previous studies.
A minimum of three indicator variables should be used
to develop each measurement model to avoid conver-
gence issues (50). In addition, it is advised to use a maxi-
mum of 30 indicator variables to obtain a converged
model and to evade model fitting issues (51). The struc-
tural model, referred to as path analysis, is formed by
linking the exogenous and endogenous latent variables
utilizing simultaneous equations (52).

The diagonal weighted least squares (DWLS) method
was the estimation approach used to develop the SEM in
this study, in which no specific distribution is assumed
for the investigated variables (53, 54). In addition, this
estimation method was used as it was designed to deal
specifically with ordinal data, as it led to unbiased results
(55–58).

The sample size is one of the key factors to develop
the SEM, as it is based on the large sample theory (51).
Various studies have asserted the required minimum
sample size to conduct a SEM. One study showed that
a minimum of 300 observations is required to develop a
SEM (51). However, other studies showed that a mini-
mum sample size of 200 would be adequate to meet the
assumptions of the large sample theory (51). Another
study showed that a ratio of 10:1 for the number of
observations to the number of investigated indicator
variables should be achieved to obtain an adequate
sample size (59). To measure the adequacy of the sam-
ple size used in the analysis, it was suggested to assess
the statistical power of the developed SEM (51). To
determine the statistical power of the model, the confi-
dence intervals surrounding the root mean square error
of approximation (RMSEA) should be evaluated as
well as the RMSEA value. A RMSEA value less than
or equal 0.08 suggests adequate statistical power.
Figure 1 shows the structure map and the different ele-
ments of the SEM. The measurement models could be
expressed as shown in Equation 4 and the structural
model is given in Equation 5:

y

x

� �
=

ly 0

0 lx

� �
h

j

� �
+

e
d

� �
ð4Þ

h= b h+ Gj+ z ð5Þ
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where x is the vector of observed exogenous variables, y
is the vector of observed exogenous variables, j is the vec-
tor of latent exogenous variables, h is the vector of latent
endogenous variables, d is the vector of measurement
error terms for observed variables x, e is the vector of
measurement error terms for observed variables y, lx is
the structural coefficients for latent exogenous variables
to the observed variables, ly is the structural coefficients
for latent endogenous variables to the observed variables.
The set of exogenous latent variables are collected in h

vector, where b is their estimate vector of regression coef-
ficients. The vector for the endogenous latent variables is
j and g is their regression coefficients, while z is the error
term for the structural model.

Data Preparation and Description

Historical crash data, along with other datasets, were
extracted for the time period from 2015 to 2019 to per-
form the analysis for this study. Other datasets were also
used in this study, including roadway geometry, pavement
width and type, median width and type, shoulder widths
and types, and speed limits. The main source of these
datasets was WYDOT. WYDOT provides an inclusive
online data archiving system, named the Wyoming
Roadway Data Portal (WRDP), which documents factors
related to the highway system in Wyoming. Three crash
datasets formed the historical crash data for Wyoming,
namely vehicle data, location data, and individual data.
The three datasets provide details for the multiple ele-
ments of crashes that occurred in Wyoming. Vehicle data
provides details about each vehicle involved in the crash
identified with the crash report number; location data

provides information about the crash location, the sur-
rounding factors, and environmental conditions; and indi-
vidual data includes details about the persons involved in
the crash. Among the numerous variables used in this
study, only the variables that were found to be significant
in the analysis models were represented in this study.

Truck-related crashes that occurred on the three inter-
state roads (i.e., I-25, I-80, and I-90) in Wyoming were
the focus of this study. It is worth mentioning that the
three interstate roads are categorized as rural mountai-
nous interstate roads, because of their challenging geo-
metric characteristics, surrounding land use, and
relatively low traffic volumes. Truck-related crashes refer
to crashes that involved at least one truck in the crash.
Crash data were processed and subdivided into two data-
sets to distinguish between the factors affecting the two
different crash types. The two subdivisions were (1)
single-truck crashes where only one truck was involved
in a crash and (2) multi-vehicle truck crashes where more
than one vehicle was involved in the crash, including at
least one truck. Crashes were almost divided evenly,
where 50% of total crashes, which equals 2020 crashes,
were single-truck crashes, while a total of 2022 crashes
were multi-vehicle truck crashes. Based on the spatial
locations of crashes, the roadway geometry, pavement
type, number of lanes, median characteristics, and imple-
mented countermeasures were linked to the data. In
addition, traffic volume data were extracted from the
monthly traffic data reports published by WYDOT.

Table 1 shows the descriptive statistics of the collected
datasets used in this study. Data were categorized into
several categories to easily explore the indicator vari-
ables. The first category was for the crash injury severity

Figure 1. Structural map and the elements of the structural equation model.
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as the response variable, which included two levels: PDO
and F+I crashes. The roadway factors category included
several indicator variables that express the roadway geo-
metry, pavement type, and cross-section elements. The
temporal category included the traffic volumes and the
season in which the crash occurred, as well as truck traffic
variables. The season variable was considered in the anal-
ysis as it accounts for the seasonal variation for crash fre-
quencies. Crashes that occurred from April 15 to October
15 were considered as summer season crashes, while other
crashes were considered as winter crashes. Lighting condi-
tions, roadway surface conditions, and weather reported
in the crash reports were the indicator variables for the
environment data category. The truck type was included
as one of the indicator variables for the crash characteris-
tics category. It was categorized based on the weight of
the truck involved in the crash. Driver and roadway treat-
ments were the last two categories in the dataset. The
driver category indicates the truck driver characteristics,
while the roadway treatments indicate the existing coun-
termeasures implemented at the crash location. Table 1
provides the percentage of each level for the categorical
indicator variables: the mean, standard deviation, mini-
mum, and maximum for the continuous and integer indi-
cator variables.

Preliminary Data Analysis and Visualization

To better understand the three investigated rural corri-
dors and provide initial insights into crash factors for
truck-related crashes, a preliminary analysis was con-
ducted. Figure 2 provides a visualization for truck-

related crashes that occurred on the three interstates in
Wyoming, in which crash density weighted by severity is
mapped. In addition, weather stations located near the
three interstate roads, the weather-based VSL sections,
and rest areas are represented. The background of
Figure 2 represents the annual average precipitation that
occurred in Wyoming from 2014 to 2019. Annual aver-
age precipitation rates were extracted from the Wyoming
Water and Climate Web Atlas (13), which was repre-
sented to visually superimpose locations with severe
weather conditions and locations with high crash densi-
ties. Compared to I-25 and I-90, truck crashes and truck
crash severities on I-80 were found to be the highest. The
lower part of I-25 encounters higher crash frequencies
with relatively high severity. Annual average precipita-
tion levels were utilized as an indicator for adverse
weather conditions, as precipitation in Wyoming is asso-
ciated with snowfall levels. Locations with higher preci-
pitation levels were observed to have higher truck crash
rates and crash severities. This might indicate that
adverse weather conditions would increase crash fre-
quencies and severities. Accordingly, locations with high
precipitation rates on the interstate roads are considered
more risky locations.

With higher than the average crash rates per vehicle
miles traveled (VMT), I-80 has the majority of road
weather information systems (RWISs) as well as VSL
sections compared to the other two interstates. When
severe weather events occur during winter season, road
closures are frequent on Wyoming interstates, and might
extend for several days. Usually, trucks stop at the near-
est rest area or truck parking as they cannot travel dur-
ing such events. Each interstate road has five rest areas.

Further investigation was conducted by visualizing the
roadway geometry and crash rates for multi-vehicle truck
and single-truck crashes, as well as truck crashes in sum-
mer and winter. Figure 3 shows the vertical road profiles
of I-25, I-80, and I-90 along with the number of horizon-
tal curves per 5 mi of each roadway. Comparing the three
interstates, it could be observed that I-80 has steeper ver-
tical grades compared to I-25 and I-90. Horizontal align-
ment for I-25 shows a higher number of horizontal
curves per 5 mi along the alignment.

To provide a more realistic representation for crashes,
truck crashes were normalized by annual average daily
traffic (AADT). Truck crashes per thousand vehicle miles
traveled are represented in Figure 3. Comparing the three
rural interstates, it could be noticed that I-80 had the
highest truck crash rates. Given that crashes were nor-
malized by traffic volumes, this clearly indicates that I-80
is the most hazardous for trucks in Wyoming.

Several crash severities and types were considered in
this study. Two crash severity rates, PDO and F+I,
and by season, summer and winter, for multi- and single-

Figure 2. Heat map for truck crashes on rural interstate roads
and precipitation in Wyoming.
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vehicle truck crashes are presented in Figure 3. Single-
truck crashes rates are located on the top part of the crash
severity subgraphs, while multi-vehicle truck crash rates
are presented at the lower part of each subgraph. It could
be observed that winter truck crash rates are significantly
higher than the rates of summer truck crashes. It could
also be noticed that PDO crash rates nearly coincide with
the rates of winter crashes. To determine the distribution
of PDO and F+I crashes across the winter and summer
seasons, percentages were calculated. It was observed that
most of F+I crashes with a total of 65.08% as well as
70.43% of PDO crashes occured in winter season.

To initially assess the effect of roadway geometry on
crashes, crash rates and roadway geometry were graphed
symmetrically. Superimposing crashes and roadway geo-
metry clarifies that more crash rates are located within
roadway sections with steep vertical grades and a high
number of horizontal curves per 5 mi. This could be
observed on I-80 within the section from milepost 250 to
milepost 350, I-25 from milepost 0 to 25, and I-90 from
milepost 150 to 210.

This preliminary analysis showed that adverse weather
conditions as well as challenging roadway geometry
could be among the factors that would increase the

Figure 3. Roadway geometry and crash rates averaged over 5-mi segments.
Note: VMT = vehicle miles traveled; PDO = property damage only; FI = fatal and injury; MV multi-vehicle; SV = single vehicle.
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severity of truck-related crashers. The patterns of the
represented truck crash rates justify the several roadway
treatments related to intelligent transportation systems
(ITSs) that WYDOT implemented on the three rural
interstates.

Results

The R� studio statistical software was utilized to develop
the OLM and the RPLM. A total of six parametric mod-
els were developed, in which three truck crash types were
investigated: (1) total truck crashes; (2) multi-vehicle
truck crashes; and (3) single-truck crashes. The SEM was
applied to the same datasets, in which three latent factor
models were developed. SAS software was used to
develop the measurement and the structural models for
the SEM latent factor analysis.

Parametric Results from the OLM and RPLM

The 95th percentile confidence interval was used to deter-
mine significant variables affecting the injury severity of
truck crashes. Similarly, the choice of specifying a partic-
ular variable as a random parameter was made based on
the statistical significance of the standard deviation of
the variable’s random parameter distribution. Table 2
shows the results obtained for the OLM as well as the
RPLM.

Model Fit Statistics. The log-likelihood ratio (LLR) test is
employed to compare the performances of the OLM and
RPLM. The test statistic, which follows a x2 distribution,
is computed as twice the difference of the log-likelihoods
(LLs) of both models. The degrees of freedom (DFs) are
equivalent to the difference in the number of parameters
of both models. Therefore, with respect to model fit, the
total truck crash and the multi-vehicle truck crash
RPLM are the best fit model according to LLR test
results comparing the performances of each model pair.
The LL ratio test results indicated that the RPLM
single-vehicle truck crash model’s predictive power was
not significantly different from that of the OLM (LLR
x2 =2.979, DF=1, p-value =0.084) at the 95th per-
centile confidence level. However, the test statistic was
significant at the 90th percentile level. When it comes to
the comparison between the total truck crash models
(LLR x2 =9.887, DF=4, p-value =0.042) and the
multi-vehicle truck models (LLR x2 =9.817, DF=4, p-
value =0.084), it appears that the RPLM outperforms
the OLM with respect to the model fit. Other model fit
statistics such as the Akaike information criterion (AIC
[lower the better]) and the McFadden’s R-squared, R2

(higher the better), point to the same conclusion as the
LLR test results.

Crash Characteristics. Crashes between trucks and other
vehicles are expected to result in fatality/severe injury
(17, 24, 60). As the number of vehicles in a crash
increases, it is expected that the odds of fatal/injury
increase by 1.786 times and 1.391 times, found from the
total truck crash and multi-vehicle truck crash models,
respectively. The increase in the truck percentage vari-
able in the total truck crash model indicates a similar
finding.

Speeding for conditions such as adverse weather has
been found to be a contributing factor in raising the
resulting severity of a crash (60) Similar to the previous
study, the multi-vehicle truck crash model predicts that
speed that is too fast is a significant variable. Among the
multi-vehicle crash types, head-on (ÔR=8.519) was
found to have the most severe outcome, significantly
increasing the odds of fatal/severe injury in the TTC
model. Rear-end crashes have similar outcomes in both
TTC and MVTC models, with ÔR=5.396 and 5.389,
respectively. Multi-vehicle and single-vehicle rollovers
appear to result in fatal/injury with estimated odds of
15.951 and 7.989, respectively. These results are synchro-
nous with previous similar studies (17, 61). The angle
crash was identified as a random parameter in the total
truck crash model with an estimated normal distribution
of mean=0.821 and standard deviation=1.272. It can
be inferred from the result that an estimated 74% of
angle crashes are likely to result in fatal/severe injury.

When vehicles collide with a fixed object, such as
signs, delineator posts, or fences, as the first harmful
event, the resulting severity outcome is likely to be minor
injury or no injury (24, 60, 62). However, the results in
this study show that truck crashes are likely to result in a
fatal/severe injury when colliding with a fixed object as
inferred from the total truck crash and single-truck crash
models, ÔR=3.285 and ÔR=4.975, respectively.
Among the other crash characteristics, it was found that
when crashes occur on roadways or traveled paths, the
estimated odds of a higher injury severity decrease by
0.664 and 0.536 times compared to off-roadway or on-
shoulder crashes, as inferred from the TTC and MVTC
models. A similar result was reported by Ahmed et al.
(17) and Castro et al. (63). Work zone-related crashes
were found to result in lower injury severity. However,
Khattak and Targa (32) showed that truck-involved
crashes in work zones are likely to result in higher injury
severity. One could argue that the lower speeds in work
zones contributed to crashes resulting in lower severity.

Road Characteristics. Limited sight distances on extreme
grades often result in fatal/injury crashes (64). Similarly,
the total truck crash model indicates an estimated odds
of 3.559 times a crash resulting in fatal/injury outcome
when occurring on a sag grade, while the single-vehicle
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Table 2. Ordinary Logistic Model (OLM) and Random Parameter Logit Model (RPLM) for Total, Multi-Vehicle, and Single-Truck Crashes

Variables
OLM RPLM

Est SE z-value p-value OR Est SE z-value p-value OR

Total truck crashes
constant 22.677 0.342 27.836 \0.001 0.069 22.636 0.428 26.152 \0.001 0.072
numveh 0.489 0.081 6.042 \0.001 1.631 0.580 0.102 5.718 \0.001 1.786
sag 1.144 0.526 2.177 0.029 3.140 1.270 0.590 2.151 0.032 3.559
HZTYP 0.229 0.114 2.013 0.044 1.258 0.253 0.132 1.922 0.055 1.288
female 0.375 0.118 3.179 0.001 1.455 0.431 0.141 3.060 0.002 1.539
dcond 0.896 0.130 6.903 \0.001 2.449 0.983 0.156 6.288 \0.001 2.672
restraint 20.641 0.277 22.310 0.021 0.527 20.825 0.344 22.402 0.016 0.438
Opposite 1.887 0.263 7.169 \0.001 6.598 2.142 0.321 6.668 \0.001 8.519
Rearend 1.475 0.127 11.581 \0.001 4.370 1.686 0.171 9.835 \0.001 5.396
Rollover 2.004 0.135 14.838 \0.001 7.416 2.233 0.188 11.903 \0.001 9.332
Fixed 1.076 0.237 4.546 \0.001 2.934 1.189 0.274 4.343 \0.001 3.285
onroad 20.325 0.118 22.751 0.006 0.723 20.409 0.139 22.954 0.003 0.664
snowy 20.462 0.098 24.736 \0.001 0.630 20.555 0.117 24.753 \0.001 0.574
wz 20.587 0.224 22.623 0.009 0.556 20.656 0.265 22.474 0.013 0.519
Tper 0.858 0.375 2.287 0.022 2.359 0.891 0.430 2.071 0.038 2.437
mean.daylight na na na na na 20.410 0.184 22.230 0.026 0.664
mean.young 20.503 0.224 22.245 0.025 0.605 21.929 1.150 21.679 0.093 0.145
mean.Angle 0.990 0.165 5.997 \0.001 2.693 0.821 0.444 1.850 0.064 2.273
sd.daylight na na na na na 1.091 0.355 3.078 0.002 na
sd.young na na na na na 2.584 1.227 2.105 0.035 na
sd.Angle na na na na na 1.272 0.689 1.846 0.065 na
AIC 3295.591 3293.656
LL at convergence 21631 21626
Mcfadden’s R2 0.162 0.165

Multi-vehicle truck crashes
constant 22.849 0.301 29.461 \0.001 na 23.749 0.600 26.246 \0.001 na
numveh 0.557 0.104 5.366 \0.001 1.745 0.892 0.206 4.333 \0.001 2.441
RS 0.247 0.136 1.813 0.070 1.280 0.330 0.189 1.744 0.081 1.391
young 20.825 0.366 22.253 0.024 0.438 21.118 0.524 22.134 0.033 0.327
female 0.291 0.131 2.220 0.026 1.338 0.422 0.191 2.214 0.027 1.525
dcond 0.972 0.161 6.037 \0.001 2.643 1.400 0.277 5.059 \0.001 4.056
speedtoofast 0.412 0.213 1.936 0.053 1.510 0.639 0.299 2.141 0.032 1.895
Angle 0.811 0.172 4.716 \0.001 2.249 1.060 0.259 4.098 \0.001 2.886
Rearend 1.233 0.135 9.154 \0.001 3.430 1.684 0.251 6.700 \0.001 5.389
Rollover 1.918 0.555 3.454 0.001 6.805 2.770 0.835 3.318 0.001 15.951
onroad 20.539 0.174 23.088 0.002 0.584 20.624 0.246 22.540 0.011 0.536
snowy 20.423 0.134 23.154 0.002 0.655 20.586 0.193 23.037 0.002 0.556
wzr 20.497 0.249 21.998 0.046 0.608 20.675 0.363 21.858 0.063 0.509
mean.medtyp na na na na na 20.368 0.181 22.038 0.042 0.692
mean.daylight na na na na na 20.833 0.344 22.424 0.015 0.435
sd.medtyp na na na na na 1.652 0.752 2.199 0.028 5.219
sd.daylight na na na na na 1.922 0.573 3.353 0.001 na
AIC 1946.2 1944.4
LL at convergence 2960.1 2955.2
Mcfadden’s R2 0.115 0.12

Single-truck crashes
constant 21.866 0.364 25.129 \0.001 0.155 21.931 0.402 24.807 \0.001 0.145
Grade 0.070 0.036 1.960 0.050 1.073 0.072 0.037 1.951 0.051 1.075
VSL 20.426 0.146 22.927 0.003 0.653 20.440 0.151 22.907 0.004 0.644
route90 20.994 0.446 22.227 0.026 0.370 21.039 0.485 22.143 0.032 0.354
HZTYP 0.364 0.164 2.215 0.027 1.439 0.387 0.172 2.246 0.025 1.472
female 0.903 0.255 3.542 \0.001 2.466 0.943 0.264 3.566 \0.001 2.567
restraint 21.045 0.348 23.000 0.003 0.352 21.044 0.385 22.709 0.007 0.352
Rollover 1.968 0.152 12.911 \0.001 7.159 2.078 0.167 12.433 \0.001 7.989
Guardrail 1.442 0.268 5.384 \0.001 4.228 1.604 0.289 5.543 \0.001 4.975
dry 0.462 0.150 3.090 0.002 1.588 0.436 0.154 2.833 0.005 1.546
mean.dcond 0.849 0.217 3.908 \0.001 2.337 0.637 0.346 1.844 0.065 1.891

(continued)
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truck crash model estimates ÔR=1.075 for a crash on a
grade (sag or crest) resulting in a fatal/injury outcome.
Crashes occurring on a curve often tend to result in
higher severity (24, 65). The findings from the total truck
crash and single-truck crash models also revealed that
the odds of higher injury severity increased for a crash
occurring on a curve compared to a straight segment. A
notable finding was indicated by the I-90 variable, which
shows that single-vehicle truck crashes on I-90 are
expected to result in less severe injury outcomes. Previous
study has linked this finding to the lower AADT of I-90
and limited mobility on that interstate during adverse
weather conditions (66). The multi-vehicle truck crash
model results show that crashes on segments with rumble
strips are expected to result in higher injury severity
(ÔR=1.391). It could be argued that drivers overcorrect
their driving actions when trying to avoid getting off the
roadway due to the presence of rumble strips, which
might lead to collide with another vehicle on the roadway
or traveled path. Median type (raised) was identified as a
random parameter in the MVTC model, with 42% of
crashes on segments with a raised median expected to
result in fatal/injury outcomes.

As discussed previously, I-80 contains several VSL
sections, where they are placed on the most hazardous
segments characterized by adverse weather, steep grades,
and sharp curves. It appears that the impact of the VSL
on single-truck crashes is positive, with crashes occurring
on VSL corridors likely to result in less severe injury
outcomes.

Driver Characteristics. The predictor driver condition is
related to the emotional state of the driver with condi-
tions such as fatigue, sleepiness, angry, emotionally dis-
tressed, or agitated. Results indicate that drivers under
such non-normal conditions are more likely to experi-
ence severe crashes, with estimated ÔR=2.672 (total
truck crash), ÔR=4.056 (multi-vehicle truck crash), and
ÔR=1.891 (single-truck crash). Furthermore, the single-
truck crash model shows the driver condition variable to
be a random parameter, indicating an estimated 65% of
crashes resulting in fatal/injury outcomes when drivers
are in non-normal conditions.

Female occupants (driver/passenger) are estimated to
experience severe injuries compared to their male coun-
terparts. Similar results have been reported in previous
studies (17, 61). As expected, use of proper safety
restraints (e.g., seatbelt) in the vehicle reduces the esti-
mated odds of a higher injury severity by 0.438 times
(total truck crash) and 0.352 times (single-truck crash),
which is in accordance with other studies (61, 67).

With respect to driver age, previous studies have
found that senior drivers were likely to sustain higher lev-
els of injury in a crash compared to young or mid-aged
drivers (68, 69). The multi-vehicle truck crash model sug-
gests that young drivers have estimated higher odds of
experiencing no injury. As the ‘‘young’’ variable was
established as a random variable from the total truck
crash model, it can be inferred that only 23% of young-
aged drivers are likely to experience a fatal/injury out-
come from a truck-involved crash.

Environmental Characteristics. Results from the single-truck
crash model show that a dry road increased the estimated
odds of fatality/injury by 1.546 times. Furthermore,
crashes during snowy road conditions appear to result in
lower injury severity as found from the total truck crash
model (ÔR=0.574). Researchers argued that wet/snowy
road surface conditions made drivers more cautious of
the surroundings and drive at lower speeds. Thus, when
crashes occur in a wet/snowy surface condition, the
resulting injury outcomes were less severe (68, 70). The
daylight variable has been found to be a random para-
meter, with an estimated 35% (total truck crash) and
33% (multi-vehicle truck crash) of the crashes resulting
in fatality/injury.

SEM Development and Results for Single and Multi-
Vehicle Truck Crashes

EFA and CFA were used to pre-specify and develop the
exogenous and endogenous latent factors that were used
as the measurement models for the SEM. Crash data
were randomly divided into two portions with a ratio of
20:80, in which EFA was applied on 20% of the data,

Table 2. (continued)

Variables
OLM RPLM

Est SE z-value p-value OR Est SE z-value p-value OR

sd.dcond na na na na na 1.705 0.817 2.087 0.037 na
AIC 1381.8 1382.9
LL at convergence 2680.4 2678.9
Mcfadden’s R2 0.190 0.191

Note: AIC = Akaike information criterion; LL = Log-Likelihood; VSL = Variable Speed Limit; Est = Estimate; SE = Standard Error; OR = Odds Ratio;

na = Not Applicable.
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while the remaining 80% was used to conduct the CFA.
The application of EFA and CFA on the same dataset
should be avoided, as it might hinder the external valid-
ity of the obtained factors (44). The CFA is distinguished
from the EFA as it provides a more parsimonious solu-
tion (45).

To avoid convergence issues, a minimum of three indi-
cator variables were selected to measure each latent vari-
able. The generalized least squares (GLS) method with a
varimax orthogonal rotation was the adopted extraction
method. A cutoff value of 0.4 was used for the factor
loading values (51). The obtained Kaiser–Meyer–Olkin
(KMO) values were found to be 0.791, 0.774, and 0.714
for the total, multi-vehicle, and single-truck crashes,
respectively. The latent variables are considered well fac-
tored if the KMO value is above 0.5 (16, 29). The same
variables were loaded for the EFA and the CFA, which
resulted in a total of six factors being obtained for each
truck crash type. Table 3 shows the obtained latent vari-
ables and their factor loading.

Table 3 shows that the observed variables were simi-
larly loaded for the total and the multi-vehicle truck
crashes. However, different variables were loaded to
form the latent variables for the single-truck crash model.
This could be because of the distinct nature and crash
characteristics for single-truck crashes.

Figures 4–6 show the developed SEM to estimate the
crash severity of truck-related crashes. The latent vari-
ables are presented with oval shapes, indicator variables
are represented with rectangular shapes, and the arrows
represent the direction of the path model. Model esti-
mates, known as path coefficients, are provided on the
top of the path arrows. The obtained standard error and
the significance level presented in the form of the t-value
are provided below the path arrow. For the three devel-
oped models, the latent variable representing the crash
severity of trucks was considered as the endogenous vari-
able. Direct and indirect relationships could be observed
from the developed models. A direct relationship occurs
when the exogenous variable is directly connected to the
endogenous latent variable (i.e., a challenging driving
environment is directly connected to the crash severity).
An indirect relationship occurs when the endogenous
latent variable is connected to the endogenous latent vari-
able through an intermediate endogenous latent variable.
The provided path coefficients demonstrate the standar-
dized estimates for the linear equations, in which all the
provided coefficients were significant at the 95% confi-
dence level.

The measurement models obtained for the total truck
crashes and the multi-vehicle truck crashes are generally
similar to each other. The observed crash severity, num-
ber of vehicles involved in the crash, and the crash type
were factored to express the crash severity of truck

crashes as a latent variable. The results showed that the
increase in injury severity and the number of vehicles
involved in the crash would increase the crash severity of
truck crashes, given the positive estimates of 0.143 and
11.772 for total and multi-vehicle truck crashes, respec-
tively. The negative sign of the estimate for the crash
type indicates that compared to angle crashes, other
crash types will reduce the severity of truck crashes.
Truck type was found to be significant in explaining the
crash severity of total truck crashes. The obtained esti-
mate of 0.903 shows that having a heavy truck involved
in the crash would increase the severity of total truck
crashes, compared to medium and small trucks. The
presence of rumble strips was found to reduce the latent
factor of a challenging driving environment. This could
be because of the known benefits of rumble strips, as
they alert the driver to encroaching the edge of the travel
path. The single-truck SEM had a unique latent factor,
namely the presence of a bridge. This latent factor could
be explained by the three observed variables: (1) number
of lanes, (2) pavement type, and (3) the presence of
guardrails.

The path coefficients and directions are used to inter-
pret the effect of the developed measurement models on
the truck crash severity. For the single-truck crash model,
the presence of a bridge had an indirect effect on the
severity of a single-truck crash through the intermediate
factor interaction with traffic. The results showed that
for each one unit increase in bridge presence, the interac-
tion with traffic reduced by 0.841 units, while each unit
decrease in the interaction between traffic would increase
the crash severity of a single-truck crash. This could be
because of the higher probability of drowsy or distracted
driving behavior when having less surrounding traffic,
which could lead to a single-truck crash with higher
injury severity.

Interestingly, a challenging driving environment had a
dissimilar effect on the crash severity of single and multi-
vehicle truck crashes. Having a challenging driving envi-
ronment would increase the severity of single-truck crashes,
while decreasing the severity of multi-vehicle truck crashes.
This contradictory impact could be explained by account-
ing for the observed variables that are factored into this
latent variable. The presence of a work zone is one of the
variables factored in the latent variable of challenging driv-
ing environment. Usually, lane reduction or lane closures
are associated with work zones, which increases the prob-
ability of having a single-truck crash over being involved in
a multi-vehicle truck crash.

As anticipated, adverse weather conditions as well as
challenging roadway geometry would increase the sever-
ity of total truck crashes. However, the adverse weather
conditions had an indirect effect on increasing the crash
severity through the presence of challenging roadway
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geometry. This could be explained as adverse weather
conditions did not have a direct impact on increasing the
crash severity of total truck crashes. However, they
would deteriorate the ability of truck drivers to correctly

navigate through sharp curves and steep grades. It was
found that a one unit increase in adverse weather would
worsen drivability on challenging roadway geometry by
0.089 units, while a one unit increase in challenging

Figure 4. Structural equation model (path model) of total truck crashes.

Figure 5. Structural equation model (path model) of multi-vehicle truck crashes.
Note: DL State = Driving License State.
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roadway geometry would increase the severity of total
truck crashes by 0.1 units.

Goodness of Fit and Statistical Power

Table 4 shows the model fit indices to assess the perfor-
mance of the developed SEMs, in which several thresh-
olds should be met. The several provided model fit
indices reflect a different aspect of model fit (71). The
developed models show an acceptable model fit for the
three developed models, although there is a slight varia-
tion from the thresholds. The obtained standardized root
mean square residuals (SRMRs) were above the thresh-
old limit; however, values below 0.08 would provide a
good model fit (72). In addition, the parsimony index
was slightly below the limits of the acceptable threshold.
The statistical power of the model could be measured

using the RMSEA value. Even though the RMSEA were
slightly above the threshold, it is still considered to have
adequate statistical power as the obtained value is below
0.08. In addition, the RMSEA is considered a less prefer-
able index to assess the goodness of fit when having rela-
tively large sample sizes (72). Several path models were
developed for the three truck crash types; however, the
models with the lowest AIC and better performance
indices were selected.

Limitations

Several driver behavior factors might influence the out-
come severity of truck-related crashes. Driver behavior
factors could include age, driving experience, speeding,
distracted driving, drowsy driving, and so forth.
However, crash data generally suffer from absence of

Figure 6. Structural equation model (path model) of single-truck crashes.

Table 4. Model Fit Indices and Statistical Power Summary for the Developed Structural Equation Models

Model fit index

Obtained values of indices

Threshold valuesTotal truck crashes Multi-vehicle truck crash Single-truck crash

Standardized root mean square residual 0.0518 0.0536 0.0584 \0.050
Goodness of fit index (GFI) 0.9210 0.9104 0.900 .0.900
Parsimony index—adjusted GFI 0.8950 0.8909 0.8894 .0.900
RMSEA estimate 0.0549 0.0603 0.0668 \0.055
Bentler comparative fit index 0.901 0.898 0.893 .0.900
Akaike information criterion 1347 1579 1768 Lower is better

Note: RMSEA = root mean square error of approximation.
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driver behavior factors as they are difficult to collect.
Accordingly, most of the utilized factors here in this
study are related to the crash characteristics. Available
driver behavior factors, such as age, DUI, speeding,
safety belt usage, and gender, were included in the analy-
sis. Furthermore, some of the presented driver beha-
vioral factors might be subjective, as they are based on
narratives for drivers, which might be biased toward
higher adoption rates. This might be a cause of the
absence of such factors in the significant variables in the
developed models. Traffic volumes, as the main crash
exposure factor, are aggregated over a year per roadway
section. This might be an indication of the level of traffic
at a specific roadway section, but it does not reflect the
actual traffic encountered at the crash event. The find-
ings from this study support the need for future investi-
gation into heavy truck casual effects that include driver
behavior factors that clarify other factors that might
influence truck crashes. Furthermore, future work could
be aimed toward investigating the correlation among the
random parameters. Sophisticated modeling approaches
such as the correlated RPLM with heterogeneity in
means and variances could provide more insights into
driver performance and other factors.

Conclusions and Discussions

The results of this study could provide guidance to trans-
portation agencies and policy makers to select effective
interventions that may help in reducing truck-related
crash severity. This study showed that factors affecting
the severity of truck-related crashes are caused by multi-
ple contributing factors, not a single erroneous decision
or action, which was in line with previous studies (73–
75). The SEM could potentially allow understanding the
systematic approach to truck safety. While the SEMs
showed the direct and indirect effects of crash contribut-
ing factors, logistic models only showed the direct effects
of variables on crash severity.

Preliminary data analyses showed that locations that
encounter harsh weather conditions and challenging
roadway geometry also receive higher crash frequencies/
severities. The results of the preliminary analysis were
also supported by the developed model results. The
results from the SEMs showed that adverse weather con-
ditions and challenging roadway geometry have direct
and indirect impacts on increasing the severity of truck
crashes. Combinations of multiple challenging driving
conditions could significantly increase the probability of
having more severe crash injuries because of the direct
and indirect impacts found in the SEM results.

This study showed the importance of assessing the
crash severity of trucks using multiple analysis
approaches. The OLM showed the direct effects of

variables on the response variables while providing easy
interpretation for the results. However, it does not allow
the parameters to vary across observations. The random
parameter model was utilized in this study to account for
the individual-level heterogeneity in the crash data. On
the other hand, parametric approaches do not clarify the
indirect impact of observations on crashes. On the other
hand, SEMs do not provide a clear quantified impact in
the form of parameter estimates. Therefore, this study
highlights the importance of investigating truck crash
data using multiple approaches that will complement
one another. This would help practitioners extract deeper
and more useful insights into crash contributing factors
for developing mitigation strategies.

The random parameters model indicated that truck
percentage was among the significant variables that con-
tribute to an increased crash severity. This study also
clarified the adverse impact of severe weather conditions
on increasing crash severity for trucks. Utilizing the
SEM approach, the direct and indirect effects of factors
on truck crash severity were clarified. In addition, the
crash mitigation strategies in the form of countermea-
sures implemented on the investigated rural corridors
were found to be effective in enhancing the safety of
commercial vehicles. These countermeasures included
VSLs, guardrails, and rumble strips. Speeding was
among the variables found to increase the crash severity
of trucks. There is a major issue with respect to truck
drivers’ compliance with posted VSLs, especially in
adverse weather conditions. Usually, truck drivers speed
in reduced visibility, which might lead to increased crash
frequencies, crash severities, or both. It would be recom-
mended to increase traffic enforcement to provide homo-
geneous operating speeds. Comparing the I-80 corridor
to the other two interstate corridors (I-90 and I-25), I-80
can be considered more crucial to freight operations in
Wyoming, given the longer length, higher traffic
volumes, and harsher driving conditions. In addition, the
preliminary analysis showed that I-80 receives higher
crash frequencies and severities. It could be recom-
mended to either increase the frequency or capacity of
truck rest areas for emergency situations.

To increase drivers’ trust in the VSL system, an appro-
priate operating speed that matches the environmental
and the road surface conditions should be provided.
Thus, it would be recommended to update the algorithms
of the VSL corridors to account for real-time conditions
to reduce subjectivity. Real-time weather detection sys-
tems based on machine vision that collect weather data
from cameras and sensors could provide a consistent
quantification for the encountered weather conditions.
This quantification could assist Traffic Management
Centers (TMCs) in determining appropriate operating
speeds.

146 Transportation Research Record 2677(9)



The presence of rumble strips was found to be effective
in reducing crash severity in the developed models. Since
this study also showed that adverse weather negatively
affects crash injury severity, the positive effect of rumble
strips could be undermined. A previous study showed that
during severe snowstorms, compacted snow located on the
roadway could negatively influence the performance of
rumble strips (76). The study also concluded that the effec-
tiveness of rumble strips in adverse weather could be
enhanced by a higher level of winter maintenance opera-
tions. Therefore, it could be recommended to update main-
tenance policies with respect to the snow removal processes.
Furthermore, upgrading the equipment by adding tow
plows would allow the plowing of wider road widths.

The results of this study highlighted the importance of
increasing situational awareness for commercial truck
drivers with upcoming hazardous events. This could be
performed by communicating real-time information with
respect to upcoming hazardous events. These hazardous
events could include adverse weather conditions, bad
road surface conditions, challenging roadway geometry,
road closures, work zone locations, and upcoming
crashes. Real-time information could be communicated
via several platforms. Recently, a CV pilot on I-80 was
deployed to enhance the operational safety of commer-
cial trucks. In addition, real-time information could be
communicated using 511 applications, and via the
Commercial Vehicle Operator Portal (CVOP). By com-
municating such information, the situation awareness of
truck drivers would be enhanced, as well as their prepa-
redness for encountered dangerous events.
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matory Factor Analysis of Ordinal Variables with Misspe-

cified Models. Structural Equation Modeling, Vol. 17, No.

3, 2010, pp. 392–423. https://doi.org/10.1080/10705511.

2010.489003.
59. Suhr, D. The Basics of Structural Equation Modeling. Pre-

sented SAS User Group of the Western Region of the United

States (WUSS), Irvine, CA, 2006.
60. Ahmed, I. U., and M. M. Ahmed. Investigating the Tem-

poral Instability in Injury Severity Outcomes of Clear and

Adverse Weather Crashes on Rural Mountainous High-

ways. Transportation Research Record: Journal of the

Transportation Research Board, 2022. 2676: 107–132.
61. Chen, C., G. Zhang, H. Huang, J. Wang, and R. A. Taref-

der. Examining Driver Injury Severity Outcomes in Rural

Non-Interstate Roadway Crashes Using a Hierarchical

Ordered Logit Model. Accident Analysis & Prevention, Vol.

96, 2016, pp. 79–87. https://doi.org/10.1016/j.aap.2016.06.

015.
62. Uddin, M., and N. Huynh. Injury Severity Analysis of

Truck-Involved Crashes Under Different Weather Condi-

tions. Accident Analysis & Prevention, Vol. 141, 2020, p.

105529.
63. Castro, M., R. Paleti, and C. R. Bhat. A Spatial Generalized

Ordered Response Model to Examine Highway Crash Injury

Severity. Accident Analysis & Prevention, Vol. 52, 2013,

pp. 188–203. https://doi.org/10.1016/j.aap.2012.12.009.
64. Liu, P., and W. Fan. Exploring Injury Severity in Head-on

Crashes Using Latent Class Clustering Analysis and Mixed

Logit Model: A Case Study of North Carolina. Accident

Analysis & Prevention, Vol. 135, 2020, p. 105388. https://

doi.org/10.1016/j.aap.2019.105388.
65. Ma, Z., C. Shao, H. Yue, and S. Ma. Analysis of the Logis-

tic Model for Accident Severity on Urban Road Environ-

ment. Proc., IEEE Intelligent Vehicles Symposium, IEEE,

New York, June 3, 2009, pp. 983–987.
66. Gaweesh, S. M., I. U. Ahmed, M. M. Ahmed, and S. S.

Wulff. Developing Statewide Safety Performance Func-

tions for Commercial Trucks Transporting Hazardous

Gaweesh et al 149

https://doi.org/10.1002/1099-1255
https://doi.org/10.1016/J.AMAR.2017.04.001
https://doi.org/10.1016/j.aap.2007.06.006
https://doi.org/10.1016/j.aap.2007.06.006
https://doi.org/10.1007/s12205-017-0629-3
https://doi.org/10.1016/j.aap.2015.07.023
https://doi.org/10.3758/s13428-015-0619-7
https://doi.org/10.3758/s13428-015-0619-7
https://doi.org/10.1037/a0029315
https://doi.org/10.1207/s15328007sem1302_2
https://doi.org/10.1080/10705510903203573
https://doi.org/10.1080/10705510903203573
https://doi.org/10.1007/s11135-007-9133-z
https://doi.org/10.1007/s11135-007-9133-z
https://doi.org/10.1080/10705511.2010.489003
https://doi.org/10.1080/10705511.2010.489003
https://doi.org/10.1016/j.aap.2016.06.015
https://doi.org/10.1016/j.aap.2016.06.015
https://doi.org/10.1016/j.aap.2012.12.009
https://doi.org/10.1016/j.aap.2019.105388
https://doi.org/10.1016/j.aap.2019.105388


Materials on Interstate Rural Roads in Wyoming. Trans-
portation Research Record: Journal of the Transportation

Research Board, 2023. 2677: 943–958.
67. Carpenter, C. S., and M. Stehr. The Effects of Mandatory

Seatbelt Laws on Seatbelt Use, Motor Vehicle Fatalities,
and Crash-Related Injuries Among Youths. Journal of

Health Economics, Vol. 27, No. 3, 2008, pp. 642–662.
https://doi.org/10.1016/j.jhealeco.2007.09.010.

68. Chen, C., G. Zhang, X. C. Liu, Y. Ci, H. Huang, J. Ma, Y.
Chen, and H. Guan. Driver Injury Severity Outcome Anal-
ysis in Rural Interstate Highway Crashes: A Two-Level
Bayesian Logistic Regression Interpretation. Accident

Analysis & Prevention, Vol. 97, 2016, pp. 69–78. https://doi.
org/10.1016/j.aap.2016.07.031.

69. Huang, H., H. C. Chin, and M. M. Haque. Severity of
Driver Injury and Vehicle Damage in Traffic Crashes at
Intersections: A Bayesian Hierarchical Analysis. Accident
Analysis & Prevention, Vol. 40, No. 1, 2008, pp. 45–54.
https://doi.org/10.1016/j.aap.2007.04.002.

70. Shaheed, M. S., K. Gkritza, A. L. Carriquiry, and S. L.
Hallmark. Analysis of Occupant Injury Severity in Winter
Weather Crashes: A Fully Bayesian Multivariate Approach.
Analytic Methods in Accident Research, Vol. 11, 2016,
pp. 33–47. https://doi.org/10.1016/j.amar.2016.06.002.

71. Hooper, D., J. Couglan, and M. R. Mullen. Structural
Equation Modelling: Guidelines for Determining Model
Fit. Electronic Journal of Business Research Methods, Vol.

6, No. 1, 2008, pp. 53–60.

72. Hu, L., and P. M. Bentler. Cutoff Criteria for Fit Indexes
in Covariance Structure Analysis: Conventional Criteria
versus New Alternatives. Structural Equation Modeling: A

Multidisciplinary Journal, Vol. 6, No. 1, 1999, pp. 1–55.
https://doi.org/10.1080/10705519909540118.

73. Newnam, S., N. Goode, P. Salmon, and M. Stevenson.
Reforming the Road Freight Transportation System
Using Systems Thinking: An Investigation of Coronial
Inquests in Australia. Accident Analysis & Prevention,
Vol. 101, 2017, pp. 28–36. https://doi.org/10.1016/J.AAP.
2017.01.016.

74. Newnam, S., D. Blower, L. Molnar, D. Eby, and S. Kop-
pel. Exploring Crash Characteristics and Injury Outcomes
Among Older Truck Drivers: An Analysis of Truck-
Involved Crash Data in the United States. Safety Science,
Vol. 106, 2018, pp. 140–145. https://doi.org/10.1016/J.
SSCI.2018.03.012.

75. Newnam, S., and N. Goode. Do Not Blame the Driver: A
Systems Analysis of the Causes of Road Freight Crashes.
Accident Analysis & Prevention, Vol. 76, 2015, pp. 141–151.
https://doi.org/10.1016/J.AAP.2015.01.016.

76. Ahmed, I. U., S. M. Gaweesh, and M. M. Ahmed. Asses-
sing the Effectiveness of Centerline Rumble Strips
Accounting for Winter Maintenance Operational Levels on
Wyoming Highways Using Before-After Empirical Bayes.
Journal of Transportation Engineering Part A: Systems,
Vol. 148, No. 9, 2022. https://doi.org/10.1061/JTEPBS.

0000714

150 Transportation Research Record 2677(9)

https://doi.org/10.1016/j.jhealeco.2007.09.010
https://doi.org/10.1016/j.aap.2016.07.031
https://doi.org/10.1016/j.aap.2016.07.031
https://doi.org/10.1016/j.aap.2007.04.002
https://doi.org/10.1016/j.amar.2016.06.002
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1016/J.AAP.2017.01.016
https://doi.org/10.1016/J.AAP.2017.01.016
https://doi.org/10.1016/J.SSCI.2018.03.012
https://doi.org/10.1016/J.SSCI.2018.03.012
https://doi.org/10.1016/J.AAP.2015.01.016
https://doi.org/10.1061/JTEPBS.0000714
https://doi.org/10.1061/JTEPBS.0000714

